Virginia Tech

ACM Local Programming Contest

2006

Problem Statements
A - Mighty Need

You have a mighty need to write a program that determines what integers can be raised to integer powers to reach other integers for some reason. It probably has something to do with world conquest or tricking your enemies into riding a school bus to a room with a moose. Who knows? Anything is possible with math.
Input

The input is a number which you want to learn these things of. If the input is zero, your mighty need is over. Your mighty need will not extend to knowing about numbers higher than 10000.
Output

Output in ascending order each integer that can be raised to a power to reach the input integer followed by a carrot followed by the power.
Sample Input

64

58

81

0

Sample Output

2^6 4^3 8^2 64^1

58^1

3^4 9^2 81^1

B - Robot Finds Kitten

(ASCII art from Robotfindskitten.org)

+---+

| [-] .::. .::. |_/| |

| (+)=C ::::::::: |o o|__ |

| | | ':::::::' =-*-=__\ |

| OOO ':::' c_c__(___) |

+---+

There once was a robot. Its kitten was lost. The robot found itself in a field of objects for some reason. One of these objects may be kitten. The robot has to move to objects to measure their kittenness. Determine how many objects there are and how many may be reached by robot. The robot may move up, down, left or right. It cannot move diagonally. Only ninjas move diagonally.
Input
Each input case starts with integer number N, which is the number of lines in the input file for this map. An N of zero indicates the end of input. Other than end of input, 3 <= N <= 100.
The maximum number of open ground and objects in a single map is 5,000.
No input line will be longer than 100 characters.
Each map has exactly one robot.

The robot will always be enclosed within walls.

Any character other than, newline, ‘.’, ‘#’, space or ‘*’ should be considered an object that may be kitten.

Map Legend:

	#
	Wall – impassible

	. (period)
	Open ground

	*
	Robot

	any other printable character
	Object, which may be kitten

	 (space)
	Area outside map – not kitten

Output
For each input case, print the number of objects, the number of reachable objects and the number of unreachable objects.

(continued on next page)

Sample input
8

################

#.8............#

#.....]........#

#............$.#

#..............#

#........[.....#

#.*........../.#

################

10

 #####

 #...#

 #.r.#

#####.a.######

#.....t....*.#

#.....s......#

##############

 #.!.#

 #...#

 #####

3

########

#.*...k#

########

0
Sample Output
Objects: 5

Reachable: 5

Unreachable: 0

Objects: 5

Reachable: 4

Unreachable: 1

Objects: 1

Reachable: 1

Unreachable: 0

C - Once More, With Parity
You have a fancy RAID5 setup to store your bits, because you like bits. However your roommate has absconded to the French Rivera with your RAID controller for some reason. The RAID controller used some silly proprietary format and other controllers won’t read it. After weeks of painstakingly reverse engineering, you finally have the raw RAID5 data and just need to do the parity check and the bits are yours.

RAID5 operates by having N-1 data blocks and 1 parity block. The parity block rotates around, so in every N blocks of data there is one parity block. The parity data is calculated by using bitwise xor on all the data blocks. So if there are three data blocks the parity would be calculated like this:
p = b1 ^ b2 ^ b3

Note: in Java and C/C++ the bitwise xor operator is carot (^).

Given an input of some bytes and the index of the parity byte, output the original stored data.

Input
Each input case is one line. The line starts with an integer n, being the number of block of the current case. Input is terminated by n=0. The second integer is p, the index of the parity block (zero indexed). This is followed by n bytes, printed in hexadecimal. At most one of those bytes may be the string “XX” indicating a read failure that must be regenerated from parity data. The number of blocks will always be at least two.

Output
For each input case, print the original data. Replace any read failures with the correct data. Do not print the parity data. The hex must be upper case and leading zeros should be present where needed.
Sample Input
4 2 AB XX CB 67

4 2 AB 07 CB 67

6 0 EF 34 57 21 B8 XX
0

Sample output
AB 07 67

AB 07 67

34 57 21 B8 15

D - Toast the Most Toast

You have a large number of questionable toasters and want a large amount of toast for some reason.

You have a variety of partially used electric power circuits to operate the toasters and have measured the power required for each toaster.

Take the circuits and toasters and find the most number of toasters you can operate simultaneously.

Input
The input consists of a positive integer C (the number of circuits) followed by C non-negatives integers being the wattage you may add to each circuit.

The next line consists of a positive integer T (the number of toasters) followed by T non-negative integers being the wattage required for each toaster.

The input is terminated by a C value of zero.

C is at most 3.

T is at most 12.

Output
For each test cast, print the number of toasters that you can run simultaneously on a line.

Sample input
2 786 466

4 1351 974 710 502

2 2024 998

4 380 1132 70 422

0

Sample output
1

4
E - Rectangles of Dissent
Your boss hates you and wants you to find the area covered by some rectangles for some reason. Overlapping areas should be counted only once.
The squares are specified by integers: X Y W H. X and Y are the coordinates of the lower left hand corner of the square. W is the width and H is the height.

Limits
No part of a rectangle will fall outside of -2^31 to 2^31: -2^31 < x,y < 2^31
W and H are positive integers: 0 < w,h

The area of each rectangle is less than 2^31: W * H <= 2^31

The total area covered is less than 2^31

The number of rectangles in each input case is not greater than 200: 0 < n <= 200

Input
The input file will consist of one or more input cases. The first line of each input cases is N, the number of rectangles in that case. Input is terminated by an N equal to zero.

The input case then has N lines, one line for each rectangle in the format:

X Y W H

Output
For each input case output the area under the rectangles on a line.

	Sample Input
2

2 0 1 5

0 2 5 1

2

0 0 4 1

1 1 4 1

0

Sample Output
9

8

	[image: image1.png]0,0

4

Input 1

Input 2

F - The Great Gremlin Gauntlet

You are a grumpy gnome who has been put in charge of the gnome gremlin ground guard, gate group. You must plan the defense of your underground gnome home against ghastly gremlins who wish to eat all the glorious glutinous gastronomical goods, touch your things and generally gum up the gnome home with their grubby gropers. The gnome home is connected to the surface by a series of rooms and tunnels. For simplicity the gnome home and the outside of the hill are considered single rooms. Any room except outside or the gnome home may be sealed by a remote control gate, which makes any of the tunnels to or from that room inaccessible.

All gremlins come from outside. The gates must prevent gremlins from reaching the gnome home. The gnome home is room 0. Outside is room 1. Your task is to determine the minimum number of gates needed to protect the gnome home.

Input

The input will consist of one or more test cases. Each test case will begin with an integer N, being the number of tunnels. This is followed by N pairs of integers that define the room numbers connected by the tunnels. Room numbers will be in the range of 0 to 20 inclusive. All tunnels are bidirectional. All input cases are defendable with some number of gates. Input is terminated by N of zero.

Output

For each input case, print on its own line the minimum number of gates required to protect the gnome home.

	Sample Input

2

0 2

2 1

7

0 2

2 3

3 1

0 4

4 5

5 1

3 5

0

Sample Output

1

2

	[image: image2.png]kel YT
s Ytl - ..5. fomme
-\ -y i B, 1 i

ample 2

) Sl & ool (Rt

